The Eleotric Telegraph

No. 2.

In our last we explained what electro mag. netism was in a general sense, but in a specific sense, it is understood to relate only to the combination of a piece of horse shoe shaped soft iron surrounded with insulated helices of wire connected with a galvanic battery. The soft iron is only magnetic while under the influence of the galvanic current, and is a focus of magnetic power, capable of driving machinery. It is this virtue in the electro magnet n which the invention of Prof. Morse is bas ed. When the electro magnet is influenced by the galvanic current, it exerts considera be mechanical power, which immediatel eases when the current is broken. It is employing this power and breaking the cur rent, to transmit messages from place to place by extended lines of wire that consti utes the whole invention. The closing and he breaking of the circuit in rapid succes sion gives the pen lever, a rapid vibratory motion, and a pen lever connected with, but separated at any distance from the battery, obeys this law and exhibits the vibratory mo tion in the same manner as if it were only se parated a few feet. Mr. Alfred Vail express y saysthat this is the principle upon which Morse's Electro Telegraph is based, and no one "knows better than he." This invention then some will say '"is based upon the principle of Oersted's discovery, viz. the deflection of the needle by an electric current. In 1819 Prof. Schweiger of Halle, invented the wir coil or the Electro Magnetic multiplier which caused the current to exert a greatly in creased force upon the needle, and the electro magnet is just a superior substitute, a very superior one, for the wire coil." But here let us state the difference between the deflection of the needle by electricity, and the use of the electro magnet for telegraphic purposes. Prof. Morse uses the attractive power of the electro magnet, the deflection of the needle is a dif erent affair.
But who discovered the Electro Magnet There are many claimants for this honor, but We believe that the real discoverer has been overlooked, whether intentionally or not we will notsay. In the Transactions of the So ciety of Arts for 1825, there isthe first descrip tion of apparatus to which the name could justly be applied and this is by a Mr. William Sturgeon, of London. Ampere and Davy, had previously, it is true, magnetized steel needles as we described in our last, but there is no evidence that they had any knowledge of the uddenness with which the polarity of sot ron might be reversed by a change in the direction of the current. Prof. Jacobi, of St. Petersburgh, the eminent discoverer of Elecrotyping, awards to Mr. Sturgeon in conjunc ion with Prof. Oersted of Denmark, the dis covery of the electro magnet as a focus of mag netic power to propel machinery. To thi gentleman also belongs the credit of construc ing the first rotary electro magnet engine.
In 1832, Dr. Sculthess, in a lecture befor the Philosophical Society of Zurich, gave it as his opinion that a power for mechanical purposes could be obtained by breaking and restoring the current. In 1833 he exhibited a machine which accomplished this, and Jacobi in 1834, laid before the Academy of Sci ences of Paris, a plan of an electro magnetic engine. In 1836 Mr. Davenport, a blacksmith, of Philadelphia, turned lathes by electro mag. netism. Thus as a motive power electro mag xetism had been employed for more purpose than one previous to its first employment fo telegraphing in 1837 publicly by Prof. Morse
The moving of machinery by the electro magnet, is no doubt a different thing from tel egraphing-the results are entirely unlike but we make these statements as historical evidence of the electro magnet being used as a motive power for other purposes than tele graphing years before the first electro magne netic telegraph was constructed Electricits had been employed for telegraphing by anex tended line of wire in 1816, by Ronalds, Hammersmith, England, who published pamphlet in 1823 describing his apparatustherefore the application of the electro mag ret toattract a pen, that by a vibratory motion or at a distance from the battery, conctilute
the whole of Professor Morse's invention This is all that Professor Morse claims him. seif, and is a different system of telegraphing rom the deflection of the needle, although both are based upon electro magnetism.

Planing Machines.
We hereby resume the publishing of Pla ning Machine Patents, and we would call pa icular attention to this one of Bentham's, granted in 1793, as it is one which covers much of the debateable land, of Woodworth's patent, and is therefore of much importance.

Specification of the Patent granted to Samuel Bentham, of Queen Square Place Westminster, in the County of Middlesex, Esquire ; for his Invention of various new and improved Methods and Means of working Wood, Metal and other materials. Dated April 23, 1793.
To all to whom these presents shall come, Now know ye, that in compliance with the said proviso, I the said Samuel Bentham do hereby declare, that my said invention is described in manner following; that is to say :
A saw mill of this sort consists of a sawframe moving up and down, in which one or more saws are fixed, and a horizontal bed, on which a piece of timber is held, while the bed is moved on towards the saw ; the sawrame is confined to its course by fixed channels. By the up-and-down motion of the aw-frame, a progressive motion is given to the bed on which the piece lies, whereby at every descent of the saw, the piece is cut to a ertain depth and at every ascent the piece is dvanced; this advancement is made by a rack and pinion, set in motion by a ratchet wheel, of which a tooth is laid hold of by a claw, every time the saw goes up. Thus far, generally speaking, I adopt the same contrivce in my sawing machine. p. 228.
Working by a cotative motion of the tool. In the instance of circular saws, not to mention boring and grinding tools, working by a rotative motion has already been used, as I un ${ }^{-}$ derstand in a few instances, such as cutting timber into boards, cross cutting logs for firewood, cutting mortises for ships' blocks, cutting the teeth of cog.wheels, and other slight indentures in metal. But theidea of adapt ing the rotative motion of a tool, with more or less advantage, togiving all sorts of substances any shape that can be required, is my wn, and, as I believe, entirely new : I place , accordingly, among the inventions of which I claim the exclusive property, in as far as t has not yet been reduced to practice by others and in as far as the contrivances ere described afford sufficient instruction or producing the effect: To take the simplest mode of fitting up a circular saw, for cutting in this way, conceive a spindle furnished with a circular saw, turning between wo centres, as if in an ordinary turning lathe with a rigger or pulley to receive a band. Let the saw be strengthened, and confined to its position, by two flanches one on each side of it of equal diameter one to the other : as this diameter limits the depth of the cut which can be given by the saw, it should therefore be no greater than what is necessary to give the saw the necessary degree of stiffness. Immediately over the spindle fix a bench, of a size adapted to the work you have to perform and crossing the spindle at right angles. In this bench make a slit, for the sawto play in, projecting above it, more or less according to the depth of the piece which it has to cut. Standing now in the direction of the saw, put it in motion in such manner as to make the upper part move towards you, as it turns, shoving the piece on against the saw, it will be cut hrough. Where a rigger, if small enough not to come in the way of the piece, would be too small to give motion to the saw, its office may be pertormed by a cog wheel of somewhat less diameter than the flanches; to which cog-wheel you may give motion by another cog-wheel, fixed to a rigger of a larger size, urning upon a separate spiadle.
How, by means of a rotative saw to shape piece from the rough : a piece of wood for example for the state of a log, or a small branch of a tree; ora piece of metal as it comes from the crucible or the forge. 1. The first thing to be done is to give it a straight side : for this purpose, the business is, to advance the prece
in a direction exactly straight against the saw For securing this straightness more methods may be employed than one; the following I found as commodious as any. Cut in the bench a longitudinal channel, in a direction parallel to the saw, and the nearer to it the better. Into the channel or grove insert bar or tongue, so as to fit exactly, and yet slide with ease, but without projecting above the bench. On this longitudinal bar fix two trans verse bars, projecting their whole thickness above the bench; one of them fixed, and th other moveable, so as to be fixed at differen distances from the former, the distance bein adjustable to the length of the piece which held between them

(To be continued.)

Treatment of Cholera
Dr. Maxwell, of Calcutta, who has latel published a "Key to the Cholera" (he him self having had three attacks of the disease, thus alludes to his recovery from the attacks. My thirst became worse and worse, and I determined to relieve it at all hazards, and not add misery to death. Having made up my mind, the next point was the choice of the particular beverage; there was plain water whey and barley-water, gruel, congree, \&c. wine and water, brandy and water, \&c. T the last of these I had a repugnance, as every one has in fully-formed cholera and the other would require time and direction for their pre paration which my disease was not able to afford, or I give. Whilst thus ruminating my eye accidentally fell upon a packet of effervesing soda powders standing among crowd of other remedies and nostrums on the table. It immediately took my fancy: i struck me as the very thing I wanted, and without further delay I pointed to it, and made signs for a copious draught thereot. It was soon made and soon swallowed; it wa extremely refreshing and agreeable, and the thirst was allayed ; no nausea succeeded, and the pleasing anticipation remained of having a repetition of the draught whenever I de sired. This I was not long in desiring: in fact, almost immediately after I swallowe another, and continued repeating it wheneve the thirst became urgent. Instead of retro grading or remaining stationary, I began t improve; the stool became easier, and the spasms less vigorous and vicious.
"I experienced an inclination to sleep, a desire to be covered up, and for something hotto drink (these are the best signs, pointing to the disease escaping from the collapsestage.) I had a large tumbler full of very warm bu weak brandy and water made, and drank it off I fell asleep and had five or six hours of sound repose. I awoke bathed in perspiration, and with the exception of a little stiffness and considerable thirst, I felt perfectly well. The thirst was again relieved by the effervescing draughts, and I followed up the principle with a couple of dishes of that most delectable and pre-eminent of all stomachics, tea.'

manure.

This substance can easily be dried and con erted into charcoal in a similar manner as recommended for charring peat. It may then be mixed with night soil, answering both the purpose of drying and rendering it fit for car riage, at the same time absorbing all the am monia, \&c. It may also be mixed with urin or with animal manure of any kind for simi lar purposes. Tan-bark, in an uncharre state is of no immediate value as a manure in consequence of the gallicand other acids it ontains.
The above extract from an unknown ex change, is something interesting to our far mers, and it is correct too. Unburned tan bark we kno's to be injurious to vegetation, nature is quite differen

Iceland is little less than a mass of lava; and so intense is the energy of volcanic action in that region, that some eruptions of Hecla hav lasted six years without ceasing. Earthquakes have often shaken the whole island, carrying complete revolution in its geographica physiognomy : such as the rending of moun tains-the elevation of some andsinking down others, the desertion by rivers of the

Plano Forte Tunexa
This useful class of persons often fall under unjust censures passed upon them by those who, though they play upon the piano, areentirely ignorant of many of its peculiariies. The piano forte is susceptible of the changes of temperature, and when tuned in ne temperature will be out of tune in anther. Good and well made piano fortes will stand in tune if they are tuned at proper perids. Many people, as they think to avoid xpense, will let their instruments remain ong out of tune, which is a great detriment o them, as they are less likely to stand well fter having been so left.
A piano forte ought justly to be tuned wice a year, at least. First, when you com. mence with a fire in the room; and second, when a fire is discontinued. By following this course you have the best guaranty that he instrument will remain in tune for the ongest period ot time.
Again, the instrument should not be suffered to remain below concert pitch; if it is for years tuned belew, it will never stand up to the pitch without a great deal of labor, if in deed it ever stand at all.
Many a beautiful instrument is nearly ruined or want of attention to these simple facts.Yet it will not answer for a professional tuner o recommend these things; if he does, the people will suspect him immediately of selfish motives, and say that he is planning for is own advantege. Owners of piano fortes who are not acquainted with the nature of the instrument, ought to bear these facts in mind when by a yearly outlay of a trifling sum they may save to themselves infinitely more than hey expend, by the preservation of their intruments in which they have invested so much.

An Enormous Gas Meter
A London gas meter of immense size has ust been cast and completed at the ironworks of Messrs. Glover in Charles St. Drury Lane, London, which is about to be erected in Co ent Garden Theatre for the measurement of gas supplied that establishment by the Charered Gas Company. It is what is called a dry gas meter, -no water being employed in the process, as in the commonmeters : and is the invention of a Mr. Defries. It contains wo chambers: the upper one holds the ma-chinery,-the lower is divided into six com. partments by three moveable diagrams and hree fixed partitions. The gas enters at the inlet pipe, whence it passes to the bottom of the meter, and fills each compartment in sucession. A continuous supply is kept up by the action on the moveable diaphragms, which act upon the indicating machinery by means of a very simple and ingenious contríance, that registers the consumption of gas with unerring accuracy on a plate of six dials and indexes from units to millions. The meter is capable of measuring 6000 cubic feet per hour,-and is to measure the supply of 1500 burren. It weighs two tons; is 16 feet in circumference, and 8 in height. The hape is a sexigon, with Gothic devices and ornaments

Farmers' Wives in Olden Times.
The duties of farmers' wives, in England, in olden times, were somewhat different, han is at present the case in this country.n the reign of Henry VIII. Sir A. Fitzherbert wrote a treatise, entitled "A Prologue for the Wyve's Occupation," in which he s:
"It is a wyve's occupation to winnow all maner of cornes, to make malte, washe and wrynge, to make heye, shere corne, and in ime of nede, to help her husbande to fill he mucke wayne, or dounge carte, dryve the ploughe, to lode heye, corne and such other, and to go ard ryde to the market to sell buter, chese, mylke, egges, chekyns, capons, hennes, pygges, gese, and all maner of cornes.'

How to make the Hair Wavy

A fashionable newspaper in London thus eils the young ladies how to make their hair wavy. It is too important an affair to be limited to any one country! 'Damp the hair with water, and plait it three or four plaits every night. It will then take the waved form, thongh combed and brushed next morn-

